
 

Kiran Pudasainee [Physics, Lecturer]  St. Xavier’s College [Maitighar, Kathmandu] 

1 
 

Rotational Dynamics and Oscillatory Motion    Chapter: 1 

Rotational Motion:  

The motion of a rigid body which takes place in such a way that all of its particles move in circles about 

an axis with a common angular velocity. For example;  

i. The fixed speed of rotation of the Earth about its axis.  

ii. The varying speed of rotation of the flywheel of a sewing machine.  

iii. The rotation of a satellite about a planet 

Rotation of Rigid Bodies:  

We shall analyze the motion of systems of particles and rigid bodies that are undergoing translational and 

rotational motion. A rigid body is said to be in translational motion if each particle of the body has same 

linear displacement in the equal interval of time. For example; when a bus is moving, then the passengers 

and the bus itself are in translational motion.  

A rigid body is said to be in rotational motion about a give axis if each particle of the body has same 

angular displacement in the equal interval of time. In rotational motion, the different particles of the rigid 

body have same angular velocity but different linear velocities. For examples, the motion of a wheel of 

moving bus about its axle is rotational motion. 

Moment of Inertia (Rotational Inertia) 

The inertia of a body in rotational motion is called moment of inertia. The inability of a body to change 

its state of rest or uniform motion by itself is called inertia. A body rotating about an axis has a tendency 

to be rotating even if a stopping torque is applied to it. Such a property of a rotating body is called 

rotational inertia or moment of inertia. For example; a rotating fan doesn’t stop immediately even if the 

switch is put off due to rotational inertia.  

Let us consider, a body of mass m is rotating about an axis passing 

through a point O which is at a distance r from the particle as shown 

in fig. If F be the force applied on the particle, then,  

 F= ma           Where a is the tangential acceleration of the particle.  

Also, a = r𝛼    Where, α is the angular acceleration of the particle.  

Now, torque on the particle due to this force F is 

 𝜏 = 𝑟 × 𝐹 =  𝑟 × 𝑚𝑎 = 𝑟 × 𝑚(rα) 

∴ 𝜏 = (𝑚𝑟2)𝛼  ……………..(i) 
 

For a linear motion, we have 

Force = linear inertia (mass) × linear acceleration  

For a rotational motion, we have  

Torque = Rotational inertia (moment of inertia) ×  angular acceleration 

∴ 𝜏 = 𝐼𝛼  ……………..(ii) 

From eqn (i) & eqn (ii), we get 

I= 𝑚𝑟2  …………(iii) 

Hence, the moment of inertia I of a particle about an axis is measured as the product of its mass and square 

of its distance from the axis of rotation. In SI unit, I is measured in Kgm2 & CGS unit, it is expressed in 

gmcm2. The dimensional formula of I is I= M×L2 = [ML2T0]. 

Moment of Inertia Consists of n Particles of a Rigid Body  

Let us consider, a rigid body having a mass M is rotating about an axis with constant angular velocity𝜔. 

A rigid body consists of n particles of masses m1, m2,…...mn which are at perpendicular distances r1, r2, 
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…..rn respectively. Then the moment of inertia of these n particles about the axis axis are given by 𝐼1 =

𝑚1𝑟1
2, 𝐼2 = 𝑚2𝑟2

2, … … . . 𝐼𝑛 = 𝑚𝑛𝑟𝑛
2  respectively.  

 

We know that, the moment of inertia I of the rigid 

body is equal to the sum of moments of inertia of 

these all the particles.  

 𝐼 = 𝐼1 + 𝐼2 … … … … … + 𝐼𝑛 

𝐼 = 𝑚1𝑟1
2 + 𝑚2𝑟2

2 … … ….+𝑚𝑛𝑟𝑛
2 

 ∴ 𝐼 = ∑ 𝑚𝑖𝑟𝑖
2𝑛

𝑖=1  

Where, 𝑚𝑖 is the mass of ith particle of the body 

which is at a distance ri..

Torque or Moment of Force 

Torque is a measure of how much a force acting on an object causes 

that object to rotate. It is denoted by 𝜏. mathematically the torque is 

define as,  

Torque = Force× perpendicular distance of the force from the axis 

of rotation. 

i.e. 𝜏 = 𝐹𝑟 ………(i)  

where, Torque is a vector quantity, its SI unit is Newton meter (Nm).  

It can be expressed as vector form is,  

𝜏 = 𝑟 × �⃗� …………..(ii) 

The direction of 𝜏 is perpendicular to the plane containing 𝑟 𝑎𝑛𝑑 �⃗�. The torque may be clockwise or anti 

clockwise direction. Its dimensional formula is, 𝜏 = 𝑟𝐹 = 𝐿 × 𝑀𝐿𝑇−2 = [𝑀𝐿2𝑇−2] 

Eqn (ii) can be written as, �̂� = 𝑟 × �⃗� = 𝑟𝐹𝑠𝑖𝑛𝜃�̂� ………..(iii) 

Where, 𝜃 be angle between 𝑟 , �̂� 𝑎𝑛𝑑 �⃗�.  

When 𝜃 = 00, then eqn(iii) becomes,  

𝜏 = 𝐹𝑟sin0 = 0   for minimum 

When 𝜃 = 900, then eqn(iii) becomes,  

𝜏 = 𝐹𝑟sin90 = Fr   for maximum 

Angular Momentum  

The angular momentum of a rigid object is defined as the product of the momentum of inertia and the 

angular velocity. It is denoted by L. A rotating body possesses angular momentum. It is measured as the 

product of the linear momentum of a body and the perpendicular distance between the body and the axis 

of rotation. 

Let us consider, a body having a mass m is revolving around a circle 

of radius r with speed v about an axis passing through the center O. 

Then, angular momentum of the body is,  

L= linear momentum of a body × the perpendicular distance 

between the body and the axis of rotation. 

i.e. L=Pr 

or, L=mvr ………(i)        where P=mv 

if, 𝜔 be the angular velocity of the body, then v = r 𝜔 

L=m(r 𝜔)r 

L=mr2 𝜔 ……..(ii) 
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Eqn (i) and eqn (ii) are the expression for the angular momentum. The SI unit of angular momentum is 

Kgm2s-1. The dimensional formula is [ML2T-1]. It is the vector quantity. Which can be expressed as  

�⃗⃗� = 𝑟𝑃𝑠𝑖𝑛𝜃�̂� ………………..(iii) 

Where 𝜃 is the angle between 𝑟 𝑎𝑛𝑑 �⃗⃗�. �̂� be unit vector along the direction of �⃗⃗�. The direction of �⃗⃗� is 

perpendicular to both 𝑟 𝑎𝑛𝑑 �⃗⃗�.  

The magnitude of angular momentum is, L=Psin𝜃  …(iv) 

From eqn(iv) if 𝜃 = 00  

i.e. L=0 for minimum i.e there is no rotational effect on the body 

From eqn(iv) if 𝜃 = 900  

L= rP for maximum i.e. there is maximum rotational effect on the body 

Conservation of Angular Momentum: 

It states that ‘if no external torque acts on a system, then total angular momentum of the system remains 

conserved.’    i.e. I 𝜔 = Constant  ……(i) 

Where, I is the moment of inertia of a body about a given axis of rotation and 𝜔 is its angular velocity. 

Proof:    Mathematically the torque is define as,  

Torque = Force× perpendicular distance of the force from the axis of rotation. 

i.e. 𝜏 = 𝐹𝑟 ………(ii)   

Where, Torque is a vector quantity, its SI unit is Newton meter (Nm).  

It can be expressed as vector form is,  

𝜏 = 𝑟 × �⃗�  or, 𝜏 = 𝑟 ×
𝑑𝑃

𝑑𝑡
  where, P=mV 

𝜏 = 𝑟 ×
𝑑(𝑚�⃗⃗⃗�)

𝑑𝑡
  or, τ⃗⃗ =

d

dt
(r⃗ × mV⃗⃗⃗)  where, L= r⃗ × mV⃗⃗⃗ 

τ⃗⃗ =
d�⃗⃗�

dt
  

Therefore, the torque acting on a body is    τ⃗⃗ =
d�⃗⃗�

dt
  ………(iii) 

If external torque acting is zero. i.e. τ⃗⃗ = 0 

d�⃗⃗�

dt
= 0  

d�⃗⃗� = 0   Integrating ∫ 𝑑�⃗⃗�= constant 

�⃗⃗� = Constant ………(iv) 

From eqn(i) and eqn(iv),      

I 𝜔 =L 

This is a principle of conservation of angular momentum. 

Rotational Kinetic Energy: 

Let us consider, a rigid body having a mass M is rotating about an 

axis with constant angular velocity𝜔. A rigid body consists of n 

particles of masses m1, m2,…...mn which are at perpendicular 

distances r1, r2, …..rn respectively. All of these n particles have same 

angular velocity 𝜔 but different linear velocities. 

Let. Their respective linear velocities be V1, V2, …..Vn.  then, 𝑉1 =

𝑟1𝜔, 𝑉2 = 𝑟2𝜔……..𝑉𝑛 = 𝑟𝑛𝜔. The rotational kinetic energy of 

particle m1 is,  
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𝐸1 =
1

2
𝑚1𝑣1

2 =
1

2
𝑚1(𝑟1𝜔)2 =

1

2
𝑚1𝑟1

2𝜔2  

Similarly, the rotational K.E. of particles of masses  m2, m3…………mn 

𝐸2 =
1

2
𝑚2𝑟2

2𝜔2, 𝐸3 =
1

2
𝑚3𝑟3

2𝜔2………..𝐸𝑛 =
1

2
𝑚𝑛𝑟𝑛

2𝜔2  respectively. 

The rotational K.E. of a rigid body is equal to the sum of K.E. of the particles of the body. 

𝐸𝑡𝑜𝑡 = 𝐸1 + 𝐸2 + ⋯ … … … 𝐸𝑛  

𝐸𝑡𝑜𝑡 =  
1

2
𝑚1𝑟1

2𝜔2 +
1

2
𝑚2𝑟2

2𝜔2+
1

2
𝑚3𝑟3

2𝜔2………..
1

2
𝑚𝑛𝑟𝑛

2𝜔2 

𝐸𝑡𝑜𝑡 =  
1

2
 (𝑚1𝑟1

2 + 𝑚2𝑟2
2+𝑚3𝑟3

2………..𝑚𝑛𝑟𝑛
2) 𝜔2 

𝐸𝑡𝑜𝑡 = 
1

2
 (∑ 𝑚𝑟2) 𝜔2 

𝐸𝑡𝑜𝑡 = 
1

2
 𝐼 𝜔2 where, I= 𝑚𝑟2 

Simple Harmonic Motion 

Periodic Motion: Any motion which repeats itself after regular interval of time is called periodic or 

harmonic motion. Motion of hands of a clock, motion of earth around the sun, motion of the needle of a 

sewing machine are the examples of periodic motion.  

Oscillatory Motion: If a particles repeats its motion after a regular time interval about a fixed point 

motion is said to be oscillatory or vibratory, i.e. oscillatory motion is a constrained periodic motion 

between precisely fixed limits Motion of Piston in an automobile engine, motion of balance wheel of a 

watch are the examples oscillatory motion.  

Time period: Time taken in one complete oscillation is called time period Or, Time after which motion 

is repeated is called time period. 

Frequency: Frequency is the number of oscillations completed by oscillating body in unit time interval. 

Its SI unit is Hertz. 

Simple Harmonic Motion (SHM):  

A simple harmonic motion is defined as an oscillatory motion about a fixed point in which the restoring 

force is always directly proportional to the displacement from that point and is always directed towards 

that point. 

 Let the force be F and the displacement of the string from the equilibrium position be x. then,  

𝐹 ∝ 𝑥  

Or, 𝐹 =  −𝐾 𝑥 ………..(i) where k is a proportionality constant.  

The negative sign indicated that the restoring force F is develop opposite to the displacement from the 

mean position.  

From Newton’s second law of motion, F=ma  ……….(ii) 

Where, m be mass of particle and a=acceleration 

From eqn (i) and eqn (ii),     𝑚𝑎 =  −𝑘𝑥  

𝑎 =  −
𝑘

𝑚
𝑥 ……….(iii)    Where k and m are constant 

∴ 𝑎 ∝  −𝑥  

Above eqn shows that the acceleration in simple harmonic motion is always directly proportional to the 

displacement from the mean position and negative sign indicated that it is always directed towards the 

mean position. 

Characteristics of Simple Harmonic Motion (SHM):  

The simple harmonic motion has various characteristics. Some of them are described below;  
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1. Displacement: The distance travelled by the vibrating particle at any instant of time t from its 

mean position is known as displacement. When the particle is at P, the displacement of the particle 

along Y axis is y as shown in figure. In  ∆OPM 

𝑠𝑖𝑛𝜃 =
𝑂𝑀

𝑂𝑃
=  

𝑦

𝑟
  

𝑦 = 𝑟𝑠𝑖𝑛𝜃  

∴ 𝑦 = 𝑟𝑠𝑖𝑛𝜔𝑡  where 𝜃 = 𝜔𝑡   ………..(i) 

The amplitude of the vibrating particle is defined 

as its maximum displacement from the mean 

position. Similarly, In ∆OPN 

𝑐𝑜𝑠𝜃 =
𝑂𝑁

𝑂𝑃
=

𝑥

𝑟
  

𝑥 = 𝑟𝑐𝑜𝑠𝜃  ∴ 𝑥 = 𝑟𝑐𝑜𝑠 𝜔𝑡   …………(ii) 
 

2. Amplitude: from eqn (i) becomes,    𝑦 = 𝑟𝑠𝑖𝑛𝜃  If y is maximum then 𝑠𝑖𝑛𝜃 = 1 

∴  𝑦𝑚𝑎𝑥 = 𝑟  

Maximum displacement of the particle from the mean position is called amplitude. 

3. Velocity: The velocity in simple harmonic motion at an instant is defined as the rate of change of 

displacement at that instant.  𝑉 =
𝑑𝑦

𝑑𝑡
=  

𝑑

𝑑𝑡
(𝑟𝑠𝑖𝑛𝜔𝑡) where 𝑦 = 𝑟𝑠𝑖𝑛𝜔𝑡  

𝑉 = 𝑟𝜔𝑐𝑜𝑠𝜔𝑡    …………(iii) 

𝑉 = 𝑟𝜔√1 − 𝑠𝑖𝑛2𝜔𝑡  

∴  𝑉 = 𝜔√𝑟2 − 𝑦2 …………….(iv) 

eqn (iii) and eqn (iv) are the eqn for velocity in simple harmonic 

motion.  

At mean position 0; ∴ 𝑦 = 0 and ∴ 𝑉 = 𝑟𝜔 (maximum value) 

At extreme position Y; ∴ 𝑦 = 𝑟 and ∴ 𝑉 = 0 (minimum value) 
 

So, a particle in simple harmonic motion has maximum velocity at mean position and minimum velocity 

at the extreme position. 

4. Acceleration: The rate of change of velocity is called acceleration.  

𝑎 =
𝑑𝑣

𝑑𝑡
 = 

𝑑(𝑟𝜔𝑐𝑜𝑠𝜔𝑡)

𝑑𝑡
  

𝑎 = 𝑟𝜔
𝑑𝑣

𝑑𝑡
(𝑐𝑜𝑠𝜔𝑡) = 𝑟𝜔(−𝑠𝑖𝑛𝜔𝑡)𝜔  

𝑎 = −𝜔2(𝑟𝑠𝑖𝑛𝜔𝑡)  

∴ 𝑎 = −𝜔2𝑦  …………(v) 

This is the eqn for the acceleration in simple 

harmonic motion 
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At mean position 0;  ∴ 𝑦 = 0 and ∴ 𝑎 = 0 (minimum value) 

At extreme position Y;  ∴ 𝑦 = 𝑟 and ∴ 𝑎 = -r2𝜔 (maximum value) 

So, a particle in simple harmonic motion has zero acceleration at mean position and maximum acceleration 

at the extreme position. 

5. Time Period (T):  the time taken by the particle to complete one oscillation is called time period 

in simple harmonic motion. The magnitude of acceleration in simple harmonic motion is given by;  

𝑎 = 𝜔2𝑦  or, 𝜔2 =  
𝑎

𝑦
  or,  𝜔 = √

𝑎

𝑦
   or,  

2𝜋

𝑇
= √

𝑎

𝑦
  or, 𝑇 = 2𝜋√

𝑦

𝑎
    ∴ 𝑇 = 2𝜋√

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
 ……….(vi) 

6. Frequency; The number of oscillations made in one second is called frequency in simple harmonic 

motion. In T seconds, the particle makes 1 oscillation. In 1 seconds, the particle makes 
1

𝑇
 

oscillation.   Frequency = 
1

𝑇𝑖𝑚𝑒 𝑃𝑒𝑟𝑖𝑜𝑑
            ∴ 𝑓 =  

1

𝑇
=

1

2𝜋
√

𝑑𝑖𝑠𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡 

𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛
  …………..(vii) 

7. Wavelength( λ  );   

The linear distance travelled by the particle in one oscillation is called wavelength of the particle executing 

simple harmonic motion. If T be the time period of oscillation and v be the velocity.  λ  =vT. 

8. Phase; The phase of the particle executing simple harmonic motion at any instance gives the 

position and direction of motion of the particle with respect to its mean position. It is measured in 

terms of fraction of time period T, the fraction angle is 2𝜋.  Then,   ∴ 𝑦 = 𝑟𝑠𝑖𝑛(𝜔𝑡 + ∅0).  

Quantity (𝜔𝑡 + ∅0) in above equation is known as phase of the motion and the constant ∅0 is known as 

initial phase i.e. phase at time t=0, or phase constant. ∅ be position from where the time was taken. 

Let, (𝜔𝑡 + ∅0)be denoted by ∅.  

∅ = 𝜔𝑡 + ∅0     or, ∅ − ∅0 =  𝜔𝑡,    So, phase change in time T is, ∅ − ∅0 =  𝜔𝑡 = (
2𝜋

𝑇
) 𝑇  

∴  ∅ − ∅0 = 2𝜋  

This shows that the phase change in T seconds will be 2𝜋 radian which actually means no change in phase. 

9. Graphical representation of displacement, velocity and acceleration in simple harmonic 

motion; We have the equations of displacement y, velocity v and acceleration a, in simple 

harmonic motion are;  

𝑦 = 𝑟𝑠𝑖𝑛𝜔𝑡 = 𝑟𝑠𝑖𝑛 (
2𝜋

𝑇
) 𝑇, 𝑣 = 𝑟𝜔𝑐𝑜𝑠𝜔𝑡 =

𝑟𝜔𝑐𝑜𝑠 (
2𝜋

𝑇
) 𝑡            and   

𝑎 = −𝜔2𝑦 = −𝜔2𝑟𝑠𝑖𝑛𝜔𝑡 = −𝜔2𝑟𝑠𝑖𝑛 (
2𝜋

𝑇
)  𝑡  

respectively,  

At, t = 0, y = 0, v = r𝜔 and a=0 

At, t = 
𝑇

4
, y = r, v = 0 and a = −𝜔2𝑟 

At, t = 
𝑇

2
, y = 0, v = -r𝜔 and a = 0 

At, t = 
3𝑇

4
, y = - r, v = 0 and a = 𝜔2𝑟 

At, t = T, y = 0, v = r𝜔 and a = 0  

Graphic\l representation of displacement, 

velocity and acceleration in simple harmonic 

motion. 
 

https://en.wiktionary.org/wiki/%CE%BB
https://en.wiktionary.org/wiki/%CE%BB
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Oscillation of spring:  

Let us suppose the spring S with negligible mass which is attached to a wall and the other end to an object 

of mass m. The spring S with an object are laid on a horizontal table. If the mass is pulled slightly to 

extend spring and then released, the system vibrates with simple harmonic motion. The center of 

oscillation O is the position of mass at the end of the string corresponding to it natural length, i.e. when 

the spring is neither extended nor compressed. 

 

Let L be the extension of the spring and F be the 

restoring force set up in the spring. Then from 

Hook’s Law.  i.e.         𝐹 ∝ 𝐿  

𝐹 =  −𝐾𝐿 ……….(i) 

Where K is known as spring constant. Negative 

sign shows that the restoring force acts opposite 

to the displacement of the mass.  

If a is the acceleration produced in the mass, then 

we have      𝐹 = 𝑚𝑎 …….(ii) 

Therefore, from eqn(i) and eqn(ii), we have 

𝑚𝑎 =  −𝐾𝐿  or,   𝑎 =  −
𝐾

𝑚
 𝐿…………(iii) 

𝑎 = − 𝜔2𝐿……(iv) where 𝜔2 =
𝐾

𝑚
 is a constant. 

This shows that the acceleration is directly proportional to the displacement and is directed towards the 

mean position. Hence, the motion of a horizontal mass-spring system is simple harmonic motion.

Expression for time period, T 

Comparing eqn(iii) and eqn(iv), we get 

𝜔2 =
𝑘

𝑚
     Where 𝜔 be angular velocity. If T is time period of oscillation, then  

𝜔 = √
𝐾

𝑚
         [i.e. 𝜔 = 2𝜋𝑓 =

2𝜋

𝑇
 𝑤ℎ𝑒𝑟𝑒 𝑓 =

1

𝑇
]  

∴  𝜔 =
2𝜋

𝑇
= √

𝐾

𝑚
    where, 𝜔 =

2𝜋

𝑇
  

∴ 𝑇 = 2𝜋√
𝑚

𝐾
   ……(v) 

Which is the required expression for the time period of oscillation depends upon the mass attached to the 

spring. 

Energy of oscillation Body: 

Kinetic Energy (EK) 

Kinetic energy of the particle with velocity v is given by 𝐸𝑘 =
1

2
𝑚𝑣2 =  

1

2
𝑚(√𝜔(𝑟2 − 𝑦2))

2
 where, 

v= 𝜔(𝑟2 − 𝑦2) 

𝐸𝑘 =
1

2
𝑚(𝜔2𝑟2 − 𝑦2) … . (𝑖)  

Potential Energy (EP): 

Suppose a particle of mass m is executing simple harmonic motion. (SHM) with amplitude r and angular 

velocity v. if y is the displacement, then acceleration is,  𝑎 = −𝜔2𝑦  

The restoring force F on the particle is, 𝐹 = 𝑚𝑎  
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𝑜𝑟, 𝐹 = 𝑚𝑎 =  −𝑚𝜔2𝑦 =  −𝑘𝑦,  Where, 𝑚𝜔2 = 𝑘, a constant. If a particle is displaced further by a small 

displacement dy against the force, then work done,  𝑑𝑤 =  −𝐹𝑑𝑦 =  −(−𝑘𝑦)𝑑𝑦 = 𝑘𝑦𝑑𝑦  

Therefore total work done to displace the particle from mean position to the position of displacement y is,  

𝑤 = ∫ 𝐹𝑑𝑦
𝑦

0
= ∫ 𝑘𝑦𝑑𝑦

𝑦

0
= 𝑘 [

𝑦2

2
]

0

𝑦

=
1

2
𝑘𝑦2  

The work done on the particle will remain in the form of potential energy. Thus,  

𝐸𝑃 =
1

2
𝑘𝑦2         ∴ 𝐸𝑃 =

1

2
𝜔2𝑦2  

Total energy of the particle at any points is,   

𝐸 = 𝐸𝑃 + 𝐸𝐾     Or, 𝐸 =
1

2
𝜔2𝑦2 +

1

2
𝜔2(𝑟2 − 𝑦2)     Or, 𝐸 =

1

2
𝜔2𝑟2  

∴ 𝐸 = 2𝑚𝜋2𝑓2𝑟2  

Here, m,v and r are constant, the total energy remains constant for a particle executing simple harmonic 

motion. 

Special Cases:  

Case I: At mean position, y=0 

∴  𝐸𝑘 =
1

2
𝑚𝜔2(𝑟2 − 𝑦2)  

𝐸𝑘 =
1

2
𝑚𝜔2(𝑟2 − 0)  

𝐸𝑘 =
1

2
𝑚𝜔2𝑟2  

And,  𝐸𝑃 =
1

2
𝑚𝜔2𝑦2 

𝐸𝑃 =
1

2
𝑚𝜔202  

𝐸𝑃 = 0  

 At mean position, potential energy is zero 

and kinetic energy is maximum. So, total 

energy of the particle executing simple 

harmonic motion at mean position is in the 

form of kinetic energy. 

Case II: At extreme position, y=r:  

∴  𝐸𝑘 =
1

2
𝑚𝜔2(𝑟2 − 𝑦2)  

𝐸𝑘 =
1

2
𝑚𝜔2(𝑟2 − 𝑟2)  

𝐸𝑘 =
1

2
𝑚𝜔202  

𝐸𝑘 = 0  

And,  𝐸𝑃 =
1

2
𝑚𝜔2𝑦2 

𝐸𝑃 =
1

2
𝑚𝜔2𝑟2  

 So, K.E. is zero and P.E. is maximum at 

extreme position. So, total energy is in the 

form of P.E. at extreme position of a simple 

harmonic motion. 

The variation of K.E., P.E. and total energy as a function of displacement as shown in fig. 
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